
Poster Abstract: Rime — A Lightweight Layered
Communication Stack for Sensor Networks

Adam Dunkels, Swedish Institute of Computer Science
adam@sics.se

Abstract— Early work in sensor networks found traditional
layered communication architectures too restrictive and proposed
cross-layer optimizations. Recent work in data aggregation, how-
ever, argues that the complexity of cross-layer optimizations may
lead to fragile and unmanageable systems. This has inspiredus to
create Rime, a layered communication stack for sensor networks,
with much tinner layers than traditional architectures. Ri me
is designed to simplify the implementation of communication
protocols. A preliminary evaluation suggests that Rime maybe
able to significantly reduce the implementation complexityof
sensor network protocols with only a small increase in resource
requirements, hinting that a layered stack may be a suitable
communication abstraction even for sensor networks.

I. I NTRODUCTION

Early work in sensor networks found that traditional layered
communication architectures were too restrictive for sensor
networks [5]. Instead, radical cross-layer optimizationswere
investigated, where e.g. high-level abstractions were imple-
mented at a low level [8]. Recent work in data aggregation [6],
however, argues that complex cross-layer optimizations for
data aggregation leads to fragile and unmanageable systems.
Instead, a more traditional, layered, architecture is proposed
and found to be nearly as efficient as cross-layer aggregation
architecture. This move towards a more traditional architec-
ture for data aggregation have inspired us to revisit layered
communication abstractions for sensor networks.

The contribution of this paper is Rime, a lightweight layered
communication stack for sensor networks. Rime is different
from traditional layered network architectures such as the
Internet architecture in that the layers in Rime are unusually
thin. Rime draws heavily from communication abstractions for
distributed programming [7] where layers of simple abstrac-
tions are combined to form powerful high-level abstractions.

The purpose of Rime is to simplify implementation of
sensor network protocols and facilitate code reuse. We have
implemented Rime in Contiki [3] and a preliminary evaluation
suggests that Rime can significantly simplify protocol imple-
mentation with only a small increase in resource requirements.
The code footprint of Rime is less than two kilobytes and the
data memory requirements on the order of tens of bytes.

Rime is designed to be much simpler than existing pro-
posals for modular communication abstractions for sensor
networks [4], [9]; Rime does not allow for a fully modular
structure where any module can be replaced, but enforces a
strict layering structure where only the lowest layer and the
application layer can be replaced.

Multi−hop
Single−hop

unicast
Single−hop

ribcbrucb

suc

uc

ruc ribc

sibc

ibc

abc

nfb

nf

Bulk transfer

Reliable transmission

Identified sender

Anonymous broadcast

Stubborn transmission

broadcast

Fig. 1. The current Rime stack. More protocols and layers maybe added.

II. R IME

Rime is organized in layers as shown in Figure 1. The
layers are designed to be extremely simple, both in terms
of interface and implementation. Each layer adds its own
header to outgoing messages. Because Rime layers are simple,
individual headers are very small; typically a few bytes each.

The thin layers in Rime enable code reuse within the stack.
For example, reliable communication is not implemented in
a single layer but divided into two layers, one that imple-
ments acknowledgments and sequencing, and one that resends
messages until the upper layer tells it to stop. We call the
latter layerstubborn. A stubborn layer is not only used by
reliable protocols but also by protocols that send periodic
messages such as neighbor maintenance for routing protocols
and repeated transmission of messages in Rime’s network
flooding layer (nf). Figure 2 shows how a hop-by-hop reliable
data collection protocol implemented with Rime’s stubborn
identified best effort broadcast, sibc, and reliable unicast, ruc.

The lowest level primitive in Rime is anonymous best-
effort broadcast, abc. The abc layer provides a 16-bit channel
abstraction but no node addressing; it is added by upper layers.
The identified sender best-effort broadcast, ibc, adds a sender
identity header field and the unicast abstraction, uc, adds a
receiver header field.

An underlying MAC or link layer may chose to implement
parts of the Rime stack, such as the abc, ibc, or uc layers, in
hardware or firmware.

A. Shifting the Burden from Applications to the System Core

One of the basic ideas of Rime is to shift the burden, in
terms of memory footprint, from protocol implementations to
Rime. By making Rime part of Contiki’s system core, which
is always present in memory, loadable programs are made
smaller. Consequently, the energy consumption for program
loading [2] is reduced.



sibc_received(node_id from) {
neighbor_add_or_update(from, signal_strength());
recalculate_hops_from_sink();

}

ruc_received(node_id from) {
if(we_are_the_sink) {

print_to_serial(packet_data);
} else if(we_have_a_route) {

ruc_send(neighbor_best(), packet_data);
}

}

datacollection_process() {
ruc_setup(DATA_CHANNEL);
sibc_setup(NEIGHBOR_CHANNEL);
sibc_send(hello_message);
while(1) {

wait_until(sensor_event);
ruc_send(neighbor_best(), sensor_data);

}
}

Fig. 2. Hop-by-hop reliable data collection protocol implemented with Rime.

B. Buffer Management

To reduce memory footprint Rime uses a single buffer for
both incoming and outgoing packets similar to uIP [1]. Layers
that need to queue data, e.g. a stubborn protocol or a MAC
layer, copy the data to dynamically allocated queue buffers.

III. PRELIMINARY EVALUATION

A. Memory Footprint

The code memory footprint of individual Rime modules is
small. The smallest module currently is ibc, identified sender
best-effort broadcast, with a footprint of only 100 bytes.
Stubborn unicast and reliable unicast are the largest with a
code footprint of 226 bytes. The current total footprint of Rime
is less than two kilobytes but will increase with more features.

Each Rime layer requires between two and four bytes of
RAM per connection. The stubborn layers currently need an
extra 18 bytes of RAM because of the retransmission timer,
which currently requires 16 bytes of state. Much of this is,
however, due to the current timer implementation in Rime not
being optimized for a low memory footprint.

B. Hop-by-hop Reliable Data Collection Routing Protocol

We evaluate Rime by reimplementing Treeroute, Contiki’s
hop-by-hop reliable data collection routing protocol, with
Rime. We compare the resulting lines of code and footprint
with the existing implementation. The results suggest that
Rime can significantly reduce the complexity of protocol
implementations for sensor networks.

For this preliminary evaluation, the reimplementation does
not fully conform to the existing implementation. The exist-
ing implementation uses implicit acknowledgments while the
reimplementation uses explicit acknowledgments because we
have not yet implemented implicit acknowledgments in Rime.

The results of the reimplementation are shown in Table I.
Lines of code are measured without comments. Both imple-
mentations are compiled with GCC 3.2.3 for the MSP430
microcontroller. The code footprint for the reimplementedpro-
tocol does not include the code footprint of the Rime modules.

TABLE I

EXISTING IMPLEMENTATION AND REIMPLEMENTATION OF CONTIKI ’ S

TREEROUTE DATA COLLECTION ROUTING PROTOCOL.

Existing With Rime
Lines of code 439 179
Code footprint (bytes) 2064 772
Memory footprint (bytes) 180 110
Packet header size (bytes) 8 10

The memory footprint does, however, include the memory
footprint of the Rime modules. The table shows a significant
reduction in program size and a slight increase in header size.
One of the extra header bytes for the reimplementation is due
to the use of explicit acknowledgments. The second extra byte
is because the ruc layer uses an entire byte for a single-bit flag.
We expect that a header packing mechanism that we plan to
implement will reduce the header size.

Although the reduction in code and memory footprint for
the reimplementation of the data collection protocol module
is significant, the total code footprint for the data collection
protocol and the Rime modules is slightly larger than that of
the existing data collection implementation. In a system using
Rime the footprint of the Rime modules is, however, amortized
over all protocols and applications using Rime. Therefore we
expect that, overall, Rime will reduce the total memory and
code footprint for systems using Rime.

IV. CONCLUSIONS

Our preliminary evaluation suggests that Rime may be able
to significantly reduce complexity of sensor network proto-
col implementations, with only a small increase in resource
requirements. If these results would continue to hold true
for a more thorough evaluation, this suggests that a layered
stack could be a suitable communication abstraction even for
wireless sensor networks.

ACKNOWLEDGMENTS

This work was partly financed by VINNOVA and the
European Commission under contract IST-004536-RUNES.

REFERENCES

[1] A. Dunkels. Full TCP/IP for 8-bit architectures. InMobiSys’03, 2003.
[2] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-timedynamic linking

for reprogramming wireless sensor networks. InACM SenSys’06, 2006.
[3] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and flexible

operating system for tiny networked sensors. InIEEE Emnets-I, 2004.
[4] C. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler,S. Shenker,

and I. Stoica. A modular network layer for sensornets. InProceedings
of OSDI, November 2006.

[5] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century
challenges: Scalable coordination in sensor networks. InProceedings of
ACM/IEEE MobiCom, August 1999.

[6] O. Gnawali, K. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein,
A. Joki, D. Estrin, and E. Kohler. The tenet architecture fortiered sensor
networks. InACM SenSys ’06, November 2006.

[7] R. Guerraoui and L. Rodrigues.Introduction to Reliable Distributed
Programming. Springer, 2006.

[8] J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan. Building efficient wireless sensor networks with low-level
naming. InSymposium on Operating Systems Principles, 2001.

[9] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I Stoica.
A unifying link abstraction for wireless sensor networks. In SenSys, 2005.


