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Abstract
As sensor networks move towards increasing heterogene-

ity, the number of link layers, MAC protocols, and underly-
ing transportation mechanisms increases. System develop-
ers must adapt their applications and systems to accommo-
date a wide range of underlying protocols and mechanisms.
However, existing communication architectures for sensor
networks are not designed for this heterogeneity and there-
fore the system developer must redevelop their systems for
each underlying communication protocol or mechanism. To
remedy this situation, we present a communication architec-
ture that adapts to a wide range of underlying communica-
tion mechanisms, from the MAC layer to the transport layer,
without requiring any changes to applications or protocols.
We show that the architecture is expressive enough to ac-
commodate typical sensor network protocols. Measurements
show that the increase in execution time over a non-adaptive
architecture is small.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Dis-

tributed Systems—Network Operating Systems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Wireless sensor networks, Protocol stack

1 Introduction
As sensor networks move towards increasing heterogene-

ity [19], assumptions on how sensor network protocols op-
erate are challenged. For instance, if an application is to run
over multiple link layer technologies, applications and proto-
cols cannot rely on the existence of specific link layer mech-
anisms such as link layer retransmissions. This prompts us
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to rethink existing work on communication architectures for
sensor networks.

Having a common sensor network architecture has many
benefits in terms of interoperability and code reuse. The sen-
sor network community has recently investigated several dif-
ferent sensor network architectures, such as the SP architec-
ture by Polastre et al. [30] and the modular network architec-
ture by Cheng et al. [16]. However, neither SP nor the archi-
tecture by Cheng et al. solves the problem of how to adapt
the protocols running on top of the architectures so that they
can communicate with the lower layer protocols.

SP does not specify any protocol headers and can there-
fore be adapted to many underlying protocols. By not spec-
ifying protocol headers, SP leaves the problem of adapting
to the network protocols to the application programmer. The
modular network layer by Cheng et al. partitions network
layer functionality into a set of abstract modules. Each mod-
ule defines its own protocol headers. To add additional proto-
cols, the application programmer must define clear-cut mod-
ule boundaries and specify packet sub-headers.

In this paper, we present Chameleon, a communication
architecture for sensor networks. The Chameleon architec-
ture consists of two parts: the Rime communication stack
and a set of packet transformation modules. The Chameleon
architecture is designed to be able to adapt to a variety of
different underlying protocols and mechanisms while being
expressive enough to accommodate typical sensor network
protocols.

One of the main problems of specifying an interopera-
ble communication architecture is finding a universal header
format [16]. Such a header format must be both expressive
enough to encompass all communication patterns supported
by the architecture and flexible enough to allow for future
expansion of the architecture. For a sensor network archi-
tecture, the problem is even more challenging, as the header
format must be small enough to be efficient over low-power
radio links with small maximum packet sizes.

Chameleon takes a drastically different approach to
the problem of finding a common packet header format:
Chameleon does not define any packet headers at all. Rather,
Chameleon uses packet attributes, an abstract representation
of the information usually found in packet headers.

Packet headers are produced by separate header transfor-
mation modules that transform application data and packet
attributes into packets with headers and payload. By using
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Figure 1. A tiered architecture running multiple link
layer protocols; a low-power radio (e.g. CC1100), a mid-
power radio (e.g. 802.15.4), and Ethernet.

different Chameleon modules, it is possible to create pack-
ets that conform to any given packet header specification.
For example, Figure 1 shows a network with three differ-
ent underlying network protocols: a low-power radio such
as the CC1100, a mid-power 802.15.4 radio, and TCP/IP
over Ethernet. This network uses three Chameleon modules:
one that produces bit-packed compressed link-layer headers
for the low-power radio, one that produces 802.15.4 MAC-
layer packets, and one that produces UDP/IP transport-layer
packets. Unlike other communication architectures, the ap-
plication running on top of Chameleon does not need to be
changed to make it run over those different underlying com-
munication mechanisms. Packet header transformations are,
however, not enough to mimic the operations of such pro-
tocols. In some cases, a Chameleon header transformation
module must implement parts of the protocol logic of the
protocol it mimics. For example, the Chameleon header
transformation module that produces UDP/IP packets must
implement the ARP protocol to resolve IP addresses to Eth-
ernet MAC addresses.

The second part of the Chameleon architecture is the
Rime communication stack. Rime provides a set of basic
communication primitives ranging from best-effort single-
hop broadcast and best-effort single-hop unicast, to best-
effort network flooding and hop-by-hop reliable multi-hop
unicast. We have selected the Rime primitives based on anal-
ysis of the communication requirements of typical sensor
network protocols.

We have implemented the Chameleon architecture under
the Contiki operating system [13] and evaluate it on Tmote
Sky motes [31].

We make three main contributions in this paper. First,
we present a solution to the cross-layer information-sharing
problem of a layered communication stack by separating
the protocol logic from the details of the packet headers.
We show that the use of packet attributes instead of packet
headers allows applications to access low-level information
without violating the layering principle, while execution-
time performance is on par with a traditional packet header-
based implementation. Second, we present the Rime proto-
col stack, a lightweight layered communication architecture
for sensor networks that reduces the complexity of imple-
mentations of network protocols. We show that the com-

munication primitives in the stack map onto typical sensor
network protocols: data dissemination, data collection, and
mesh routing protocols. Third, we show that the use of
packet attributes makes it possible to adapt the output from
the protocol stack to other communication protocols such as
link and MAC layer protocols and TCP/IP.

The rest of this paper is structured as follows. We present
the background to our communication architecture in Sec-
tion 2. In Section 3 we present the high-level design of the
Chameleon architecture. Section 4 presents the Rime proto-
col stack and Section 5 the Chameleon packet transformation
module. The implementation of the architecture is discussed
in Section 6. We implement a set of sensor network protocols
in Section 7 and Chameleon modules in Section 8. We eval-
uate the architecture in Section 9. We review related work in
Section 10 and conclude the paper in Section 11.

2 Background
An adaptive communication architecture for sensor net-

works must be able to support both typical sensor network
protocols running on top of the communication architecture,
and MAC and link layer protocols on which the architecture
runs. In this section, we review the high-level architectural
issues with communication stacks and the requirements from
sensor network protocols as well as underlying MAC and
link layer protocols and standards.

2.1 The Narrow Waist
One of the primary design challenges of a network archi-

tecture is where to place the narrow waist of the architecture;
the fixed point around which the rest of the network architec-
ture grows. The narrow waist allows for different protocols
running above the waist and different technologies running
below it.

Previous work in communication architectures for sensor
networks [10, 16, 30] have placed the narrow waist of the
sensor network protocol stack below the network layer and
above the link layer. With this placement of the narrow waist,
the primary communication primitive is best-effort single-
hop broadcast. This placement of the narrow waist also al-
lows for other mechanisms, such as congestion control, to be
efficiently implemented with the architecture [6].

Our architecture corroborates the view that the narrow
waist of a sensor network architecture should be single-
hop best-effort broadcast. Additionally, we show that richer
communication primitives, such as multi-hop communica-
tion, can be naturally incorporated into such a sensor net-
work communication architecture, while keeping the narrow
waist located below the network layer. Also, our architecture
shows this placement of the narrow waist does not restrict the
use of complex underlying protocols, nor of cross-layer in-
formation sharing.

2.2 Address-free Protocols
One important class of sensor network protocols is the

address free protocols. Address-free protocols are protocols
that do not explicitly use node addresses. Perhaps the most
commonly used example of address-free protocols are data
dissemination protocols [21, 25]. In a data dissemination
protocol, data is sent from a source node to all other nodes
in the network. Neither the source, nor any other node in the



network, need to know the address of the receiving nodes.
Instead, the nodes can use broadcast to send data to all their
single-hop neighbors, which in turn can rebroadcast the data
to all their single-hop neighbors. The nodes must ensure,
however, that the network is not overloaded and therefore
must engage in some form of congestion control scheme.

2.3 Name-based Protocols
While address-free protocols play an important role in

sensor networks, name-based protocols are also frequently
used. In name-based protocols, nodes are explicitly named,
usually with their node identification address. The perhaps
most prominent example of a name-based protocol is uni-
cast multi-hop routing, where data packets are sent from one
specific node to another specific node in the network. The
sender knows the address of the receiving node, and interme-
diate nodes on the route between sender and receiver know
the addresses of the receiver.

Data collection protocols are a hybrid form of address-
free and name-based protocols. In a data collection protocol,
the participating nodes send data to one or more sink nodes
in the network. The data packets are forwarded in a multi-
hop fashion towards any of the sink nodes. The participating
nodes do not need to know the address of the sink node that
will eventually receive the data. However, the nodes typi-
cally must know the address of their single-hop neighbors.
To send data towards a sink node, a node sends its data to the
single-hop neighbor that is, in some sense, closest to a sink.
Thus the protocol is address-free in the multi-hop sense, but
not in the single-hop sense.

2.4 Neighborhood Abstractions
Many sensor network algorithms operate on collections

of nodes that are physically or logically close to each other.
A number of programming abstractions for developing such
algorithms have been constructed [18, 26].

While the neighborhood abstractions typically hide the
communication behind a layer of abstraction, the nodes that
participate in a neighborhood abstraction typically inter-
change messages with each other. Some messages are sent
directly to a specified neighbor, whereas other messages are
broadcast to all neighbors. Others need scoped flooding to
reach all n-hop neighbors [18]. Similarly, some messages are
of higher importance than others and may therefore need to
be sent using a reliable communication channel, while oth-
ers can be sent using best-effort messages. A communication
architecture for sensor networks must handle such commu-
nication patterns.

2.5 MAC Protocols
One of the primary purposes of sensor network MAC pro-

tocols is to reduce the energy consumption of the sensor
nodes. Radio communication is typically one of the most
energy consuming activities [15] and the reception energy is
often as high as the transmission energy. The MAC protocol
must therefore turn the radio off as often as possible, while
being awake long enough to allow for communication with
other sensor nodes.

Many MAC protocols for sensor networks exist, both
time-slotted TDMA protocols [32] and contention-based
CSMA protocols [1]. In TDMA-based protocols, each node

is given a time slot in a local time schedule. A node can
send only during its own time slot. CSMA-based protocols
use channel sampling to ensure that only one sender is ac-
tive at any given time. Power-optimization techniques such
as low-power listening [29] and strobed preamble [4] is used
to keep the energy consumption down while remaining re-
sponsive. With such mechanisms, packets typically cannot
be instantly transmitted but must be queued before the actual
transmission occur.

Sensor network MAC protocols often treat unicast and
broadcast traffic differently. Unicast traffic only needs to
reach the receiver, and therefore all other nodes can switch
their radio off during the packet transmission. Broadcast
traffic, however, reaches all local neighbors and all nodes
must therefore be awake during the transmission.

Many MAC and link layer protocols support automatic
packet acknowledgements for unicast traffic [1]. Packets that
should be automatically acknowledged are tagged with a spe-
cial bit to indicate that they are to be reliably transmitted. If
the sender does not receive an acknowledgement, the packet
is retransmitted.

Different MAC and link layer protocols use different ad-
dressing modes, and may even support multiple addressing
modes. One example of such a link layer is 802.15.4, where
packets can have either 64-bit addresses or 16-bit addresses.
There is also an option to completely turn off addresses in
packet headers.

An adaptive sensor network communication architecture
must be able to support all of the above mechanisms: packet
queuing, different handling of broadcast and unicast packets,
automatic packet acknowledgement and retransmission, and
different addressing modes.

2.6 Related Standards
The ZigBee Specification is an industry standard for a

range of short-range, low data rate control and sensing ap-
plications. The ZigBee stack employs a layered architecture
that provides end-to-end reliable data transfer on top of IEEE
802.15.4 via its network layer and application support sub-
layer. ZigBee further specifies how applications can be con-
structed by requiring a pre-defined application profile along
with associated commands, called clusters, for all nodes in
the network. ZigBee supports mesh routing protocol based
on AODV [28].

The Internet protocol family, TCP/IP, has traditionally
been viewed as unsuitable for sensor networks. To make
TCP/IP viable for wireless sensor networks, we have previ-
ously suggested the use of simplified implementations of the
TCP/IP protocol stack [12] and optimizations such as header
compression [14]. Recently, these ideas have been picked
up both in standardization efforts such as the 6lowpan IETF
working group [27] and by industry [8]. For example, to
meet the strict energy constraints of sensor networks, 6low-
pan nodes do not fully comply with the IPv6 standard and
the IPv6 headers are compressed before transmission.

Ideally, an adaptive sensor network architecture should
allow for protocols running on top of the architecture to be
compatible with such standard protocols.
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Figure 2. The Chameleon architecture. Applications and
network protocols run on top of the Rime stack. The out-
put from Rime is transformed into different underlying
protocols by header transformation modules.

3 The Chameleon Architecture
The Chameleon architecture is an adaptive communica-

tion architecture for sensor networks. The purpose of the ar-
chitecture is threefold. First, the architecture is designed to
simplify the implementation of sensor network communica-
tion protocols. This is done through the use of the Rime pro-
tocol stack. Second, the architecture allows for sensor net-
work protocols that are implemented on top of the architec-
ture to take advantage of the features of underlying MAC and
link layer protocols. This is done by using packet attributes
instead of packet headers. Third, the architecture allows for
the packet headers of outgoing packets to be formed inde-
pendently of the protocols or applications running within the
architecture. Separate packet transformation modules handle
packet header construction.

The Chameleon architecture draws from previous work
on sensor network architecture [10, 16, 30] and is inspired
by work in the area of distributed programming [20] and
general-purpose network architecture [3, 9].

Figure 2 shows the Chameleon architecture. The architec-
ture contains three parts: the Rime stack, which provides a
set of communication primitives to applications running on
top of the stack; a set of network protocols running on top
of the Rime stack; and the Chameleon header transformation
modules, which create packets and packet headers from the
output of the Rime stack. Applications run either directly on
top of the Rime stack, or on top of communication protocols
that run on top of Rime.

The Chameleon header transformation modules can pro-
duce either tightly bit-packed packet headers or headers that
conform either to specific MAC or link layer protocols, or
to other communication protocols. Some header transforma-
tion modules also implement parts of the protocol logic of
the protocols they mimic.

Applications and protocols pass application data down to
the Rime stack. The Rime stack adds packet attributes to
the application data before it passes the application data and
packet attributes to the underlying Chameleon header trans-
formation module. The header transformation module con-
structs packet headers from the packet attributes and sends
the final packets to the link-level device driver or the MAC
layer. The MAC layer can inspect the packet attributes to
decide how the packet should be transmitted. For example,
broadcast packets may be sent differently from unicast pack-
ets, and packets that need single-hop reliability can be sent
with link-layer acknowledgements turned on.

3.1 Separation of Protocol Logic and Protocol
Headers

The protocol logic in the Rime stack does not deal with
low-level details of packet headers such as the placement,
structure, and alignment of header fields. Rather, all man-
agement of such low-level details is contained in the header
transformation modules.

Instead of using packet headers, the Chameleon archi-
tecture uses packet attributes. Packet attributes contain the
same information that normally is found in packet headers.
The packet attribute information is a more abstract represen-
tation of the packet header information. Table 3.1 lists the
pre-defined packet attributes in the Chameleon architecture.
Both applications and lower layer protocols may define ad-
ditional packet attributes.

The pre-defined packet attributes include the sender and
receiver addresses, packet IDs, packet types, the number of
times that a packet has been forwarded, as well as feedback
information from the lower layers, such as the estimated link
quality, and information about radio congestion.

Each packet attribute has a scope. The scope of a packet
attribute specifies how far the attribute will follow the packet.
Attributes with scope 0 will only follow the packet within the
node, attributes with scope 1 will be transmitted in packet
headers but will not be forwarded across more than one node,
and attributes with scope 2 will follow the packet to the final
recipient in case of a multi-hop packet.

3.1.1 Header Field Alignment
The headers in general purpose communication proto-

cols, such as the protocols in the TCP/IP stack, are typically
defined so that all header fields are aligned on even byte-
boundaries. The reason for this is that many microprocessors
cannot access quantities that are not properly aligned.

Protocol designers must ensure that all header fields
are properly aligned, and must therefore sometimes insert
padding bytes into the packet headers [24]. Low-power ra-
dio protocols, however, must reduce their header size to a
minimum and therefore in many cases cannot afford to align
all header fields.

With Chameleon’s packet attributes approach, the proto-
col implementations do not have to deal with low-level align-
ment of header fields. Rather, all low-level header alignment
details are contained in the header transformation modules.

3.1.2 Byte Ordering
Protocols headers are typically designed to allow for hosts

with different byte order to communicate with each other.



Table 1. Pre-defined Chameleon packet attributes. The
scope specifies if the attribute terminates at the multi-hop
receiver (2), the single-hop receiver (1), in the local node
(0).

Attribute Type Scope

End-to-end sender Address 2
End-to-end receiver Address 2
End-to-end packet type Integer 2
End-to-end packet ID Integer 2
Hops Integer 2
Time to live Integer 2
Single-hop sender Address 1
Single-hop receiver Address 1
Single-hop packet type Integer 1
Single-hop packet ID Integer 1
Retransmissions Integer 1
End-to-end reliable Integer 0
Single-hop reliable Integer 0
Maximum retransmissions Integer 0
Link quality estimate Integer 0

The most common byte order in communication protocols
is the so-called network byte order, which is different from
the byte order used in most microprocessors. Thus proto-
col implementations must explicitly convert all multi-byte
header field quantities into network byte order before they
are written to a packet header, and conversely convert in-
coming header fields to host byte order.

By using packet attributes instead of packet headers, the
protocol implementation does not need to know what the
byte order of the transmitted packets is, but can access the
packet attributes in host byte order. The Chameleon header
transformation modules convert all multi-byte packet at-
tributes into header fields with network byte order.

3.1.3 Cross-layer Bit-packed Header Fields
Many protocol header fields require only a few bits of in-

formation. Typical examples of such fields are flag fields or
fields that specify the type of a packet; if the packet is a data
packet or an acknowledgment packet. While it is possible
to hold single-bit fields in separate byte fields, to reduce the
total size of the header many single-bit fields are typically
packed into a single byte header field. Reducing the size
of the header is particularly important in sensor networks,
where packet sizes are small. For example, the radio chip on
the Tmote Sky board restricts the size of radio packets to 128
bytes.

Manual bit packing of single-bit header fields have sev-
eral disadvantages. First, the protocol implementation must
be aware that certain fields are single-bit fields and that
those header fields must be accessed using bit shifting and
Boolean logic expressions. Second, the protocol implemen-
tation must be aware that the memory location of a single-bit
field may be shared with other single-bit fields. The proto-
col implementation must therefore make sure that the other
single-bit fields are not overwritten when writing to a single-
bit field. Third, protocols at different layers cannot pack
their single-bit fields into one, but must use different bytes
for their single-bit fields even if the total sum of bits in the
single-bit fields is smaller than the size of a byte.

0 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sender address | Reliable

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ unicast

| Receiver address | header

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Packet type | Packet ID |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Originator address | Data

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ collection

| Sequence num | Time to live | header

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3. A non-packed layered header with a reliable
hop-by-hop header and a data collection header. Due to
alignment, the collection tree header must be located at
an even location.

0 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sender address | Reliable

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ unicast

| Receiver address | header

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|T|Packet ID| Originator | Data

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ collection

| address | Seqno | TTL | header

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4. A cross-layer bit-packed version of the header
in Figure 3 with 1-bit packet type, 5-bit packet ID and
sequence numbers, and a 5-bit time to live field. The
packed header is two bytes shorter.

In conventional layered communication architectures, it
is in general not possible to pack bit-sized header fields from
different layers into a single byte field. Instead, bit-sized
header fields must be contained in separate byte-sized fields.
An example of such a header is shown in Figure 3.

The packet attributes in the Chameleon architecture both
simplify the implementation of bit-packed header fields, and
make it possible to bit-pack header fields both within a layer
and between layers. Protocol implementations do not have to
be aware that certain packet attributes are single-bit values.
The implementation can access the attribute like any other
attribute. Furthermore, the memory location of a packet at-
tribute is not shared with other attributes. The implementa-
tions therefore do not need to worry about overwriting other
attributes when writing to a single-bit attribute. Moreover,
since the header transformation modules have access to all
packet attributes of each packet, it can efficiently pack all
single-bit attributes into single-byte packet headers. This is
shown in Figure 4, which shows a cross-layer bit-packed ver-
sion of the header in Figure 3.

3.1.4 Header Compression
Header compression is a mechanism that reduces the size

of transmitted headers by sending only header information
that is strictly needed. Header compression can be used
both to increase throughput over slow links [23] and to re-
duce the energy cost and packet loss rates in wireless net-
works [11]. In wireless sensor networks, header compression
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has recently been used to reduce the size of IPv6 headers as
part of the 6lowpan standardization effort [27].

Traditional header compression requires the header com-
pression module to both parse the original header format,
and to bit-pack the optimized header format. With packet at-
tributes, header compression is naturally included in the ar-
chitecture. Header parsing is performed on incoming pack-
ets, and the production of bit-packed headers is, as discussed
above, already a part of the architecture.

3.2 Logical Channels
Communication in the Chameleon architecture uses dif-

ferent logical channels. Each channel has its own set of
protocols and packet attributes. The communicating parties
must agree beforehand on the particular set of protocols to
be used for a particular channel.

Figure 5 illustrates the concept of logical channels in the
Chameleon architecture (see Section 4.1 for explanations of
the names in the protocol stack). Two applications, Appli-
cation 1 and Application 2, run on two different nodes and
communicate with each other using four logical channels,
y, x, x + 1, and x + 2. Application 1 uses a mesh routing
protocol, which in turn uses a route discovery protocol, and
the best-effort multi-hop unicast Rime primitive, mh. Both
nodes know that the mh primitive uses logical channel x, that
the route discovery protocol uses channels x + 1 and x + 2,
and that channel y is used by Application 2. Both nodes have
agreed on this channel configuration before the communica-
tion is set up. The situation is similar to how all Internet hosts
agree on that TCP port 80 is used for HTTP communication
and that TCP port 25 is used for SMTP.

The logical channels are opened at run-time. When an ap-
plication opens a logical channel for a stack of Rime prim-
itives, the primitives register the packet attributes they use
with Chameleon. Chameleon uses this information both
when constructing outgoing headers and when parsing in-
coming headers.

The process of constructing and parsing headers is deter-
ministic and reversible. When a packet is sent on a channel,

Chameleon uses the attribute specification to construct the
packet header. Similarly, when a packet arrives on the chan-
nel, Chameleon parses the header using the same attribute
specification.

Chameleon is free to treat different logical channels dif-
ferently in terms of how headers are constructed and what
physical device will be used to send the packet. The mapping
of channels to output devices is done either at compile time,
at system boot-up, or at run-time. Chameleon can multi-
plex multiple logical channels over a single physical link by,
e.g., explicitly transmitting the channel number in a packet
header, or it can use different physical radio channels for dif-
ferent logical channels.

3.3 Buffer Management

The buffer management in the Chameleon architecture
and the Rime stack is simple. All packets, both outgoing
and incoming, are stored in a single buffer, called the Rime
buffer. The Rime buffer contains both the application data
and the packet attributes. All access to the Rime buffer is
done at a single priority level so no locking mechanisms
need to be used. Device drivers do not write to the buffer
from their interrupt handlers, but must write to the buffer at
system priority.

Protocols that need to queue packets, such as MAC pro-
tocols that wait for the radio medium to be free, can al-
locate so-called queue buffers to hold the queued packet.
Queue buffers are dynamically allocated from a pool of
queue buffers. The contents of the Rime buffer, including
the packet attributes, are copied into the queue buffer when
it is allocated.

Rime does not specify how the queue buffers are managed
after they are allocated. If a protocol queues more than one
queue buffer, it is up to the protocol to define how the queue
is handled. For example, a MAC protocol may decide to
send high priority packets before low priority packets once
the radio medium is free.



3.4 Lightweight Layering
The Rime stack is built around a lightweight layering

principle. The communication primitives are designed in a
layered fashion, where more complex communication prim-
itives build on simpler ones. This is inspired by work in the
area of distributed programming [20], where many simple
layers are used to implement complex mechanisms such as
network consensus. The design with many simple layers al-
lows for provable properties of composition of layers; we
leave to future work to investigate if provable properties are
possible in the Rime stack.

For sensor networks, the lightweight layering principle
has several benefits. First, as the communication primitives
are simple, they are easy to implement and test. Second,
the memory footprint of the implementations of the prim-
itives is small, which is important for memory-constrained
sensor nodes. Third, as applications may attach to any layer
of the stack, the applications can express precisely how much
of the communication features that they need. In more
heavyweight-layered stacks, such as the TCP/IP protocol
stack, it generally is not possible to express such fine-grained
feature requirements. For example, a TCP/IP application that
needs congestion control but not guaranteed delivery cannot
express this within the TCP/IP protocol architecture.

3.5 Header Transformations
The header transformation modules in Chameleon pro-

duce headers from the packet attributes supplied by the Rime
stack. Chameleon can transform the packet attributes into an
arbitrary packet header format. By transforming the packet
attributes into a standard packet format, the Chameleon ar-
chitecture can become compatible with another node that
implements the standard. However, header transformations
alone are not enough to mimic another communication pro-
tocol.

3.6 Header Transformations Are Not Enough
The header transformation mechanism is able to construct

headers that are compatible with any communication pro-
tocol. However, a communication protocol is not defined
by its protocol headers, but also by its protocol logic. In
many cases, the Rime protocols already implement the pro-
tocol logic required to fulfill the impersonated protocol. In
those cases, the Chameleon header transformation module
only needs to create headers that match the impersonated
protocol.

In case the protocol to be impersonated contains protocol
logic not implemented by the Rime protocol, the Chameleon
module must itself implement the missing parts of the proto-
col logic of the protocols that it impersonates. For example, a
UDP/IP header transformation module must implement the
ARP protocol if it is running over Ethernet, and a header
transformation module that translates a reliable bulk-transfer
Rime protocol into a TCP stream must implement the SYN-
ACK exchange before data transmission can start.

3.7 Feedback from Lower Layers
The protocols implemented in a header transformation

module may need to send feedback up to the application run-
ning on top of Rime. Examples of this include both conges-
tion notification and estimates of the radio link quality.
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uc mh

ibc ipolite nf
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polite

Identified sender
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Identified receiver

Single−hop Multi−hop

Unicast
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Figure 6. The communication primitives in the Rime
stack and how they are layered.

Chameleon uses packet attributes to provide feedback
from the header transformation modules to the Rime stack.
When an event occurs that needs be forwarded to the appli-
cation, Chameleon associates the event with the channel on
which the event occurred. The next time the channel is active
and a packet is sent towards the local application, Chameleon
sets the appropriate packet attribute for the packet that is sent
up through Rime. The feedback information may also be
piggybacked on acknowledgement packets that Chameleon
produces for the benefit of the application.

4 The Rime Protocol Stack
The Rime protocol stack provides a set of communication

primitives, ranging from best-effort local neighbor broadcast
and reliable local neighbor unicast, to best-effort network
flooding and hop-by-hop reliable multi-hop unicast. Appli-
cations or protocols running on top of the Rime stack may
use one or more of the communication primitives provided
by the Rime stack.

4.1 Rime Communication Primitives
The protocols in the Rime stack are arranged in a layered

fashion, where the more complex protocols are implemented
using the less complex protocols. The communication prim-
itives in the Rime stack and how they are arranged is shown
in Figure 6.

We have chosen the communication primitives in the
Rime stack based on what typical sensor network protocols
use. Applications or protocols running on top of the Rime
stack attach at any layer of the stack and use any of the com-
munication primitives.

The Rime stack supports both single-hop and multi-hop
communication primitives. The multi-hop primitives do not
specify how packets are routed through the network. Instead,
as the packet is sent across the network, the application or
upper layer protocol is invoked at every node to choose the
next-hop neighbor. This makes it possible to implement ar-
bitrary routing protocols on top of the multi-hop primitives.

4.1.1 Anonymous Best-effort Single-hop Broadcast
The anonymous best-effort single-hop broadcast prim-

itive (abc) is the most basic communication primitive in
Rime. The abc primitive provides a way for upper layers
to send a data packet to all local neighbors that listen to the



channel on which the packet is sent. No information about
who sent the packet is included in the transmission.

All other Rime primitives are based on the abc primitive.
Normally, however, the abc primitive is not used directly by
applications or protocols that run on top of the Rime stack.
When a packet is received by the abc module, the module
immediately passes the packet to the upper layer.

4.1.2 Identified Best-effort Single-hop Broadcast
The identified best-effort single-shop broadcast primitive

(ibc) sends a packet to all local neighbors. The ibc primitive
adds the single-hop sender address as a packet attribute to
outgoing packets. All Rime primitives that need the identity
of the sender in the outgoing packets use the ibc primitive,
either directly or indirectly through any of the other commu-
nication primitives that are based on the ibc primitive.

4.1.3 Best-effort Single-hop Unicast
The best-effort single-hop unicast primitive (uc) sends a

packet to an identified single-hop neighbor. The uc primi-
tive uses the ibc primitive and adds the single-hop receiver
address attribute to the outgoing packets. For incoming
packets, the uc module inspects the single-hop receiver ad-
dress attribute and discards the packet if the address does not
match the address of the node.

4.1.4 Stubborn Single-hop Unicast
The stubborn single-hop unicast primitive (suc) repeat-

edly sends a packet to a single-hop neighbor using the uc
primitive. The stuc primitive sends and resends the packet
until an upper layer primitive or protocol cancels the trans-
mission. While it is possible for applications and protocols
that use Rime to use the stubborn single-hop unicast primi-
tive directly, the stuc primitive is primarily used by the reli-
able single-hop unicast (ruc) primitive.

Before the stuc primitive sends a packet, it allocates a
queue buffer, to which the application data and packet at-
tributes is copied, and sets a timer. When the timer expires,
the stuc primitive copies the queue buffer to the Rime buffer
and sends the packet using the uc primitive. The stuc prim-
itive sets the number of retransmissions for a packet as a
packet attribute on outgoing packets.

4.1.5 Reliable Single-hop Unicast
The reliable single-hop unicast primitive (ruc) reliably

sends a packet to a single-hop neighbor. The ruc primitive
uses acknowledgements and retransmissions to ensure that
the neighbor successfully receives the packet. When the re-
ceiver has acknowledged the packet, the ruc module notifies
the sending application via a callback. The ruc primitive uses
the stubborn single-hop unicast primitive to do retransmis-
sions. Thus, the ruc primitive does not have to manage the
details of setting up timers and doing retransmissions, but
can concentrate on dealing with acknowledgements.

The ruc primitive adds two packet attributes: the single-
hop packet type and the single-hop packet ID. The ruc prim-
itive uses the packet ID attribute as a sequence number for
matching acknowledgement packets to the corresponding
data packets.

The application or protocol that uses the ruc primitive
can specify the maximum number of transmissions that the
ruc module should attempt before the packet times out. If

Listen only period Random transmission

period

t
0

t
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Figure 7. Timeline of the algorithm used by the polite
broadcast primitive.

a packet times out, the application or protocol that sent the
packet is notified with a callback.

4.1.6 Polite Single-hop Broadcast
The polite single-hop broadcast primitive (polite) is a gen-

eralization of the polite gossip algorithm from Trickle [25].
The polite gossip algorithm is designed to reduce the total
amount of packet transmissions by not repeating a message
that other nodes have already sent. The purpose of the po-
lite broadcast primitive is to avoid that multiple copies of a
specific set of packet attributes is sent on a specified logical
channel in the local neighborhood during a time interval.

The polite broadcast primitive is useful for implement-
ing broadcast protocols that use, e.g., negative acknowledge-
ments. If many nodes need to send the negative acknowl-
edgement to a sender, it is enough if only a single message is
delivered to the sender.

The upper layer protocol or application that uses the po-
lite broadcast primitive provides an interval time, and mes-
sage along with a list of packet attributes for which multi-
ple copies should be avoided. The polite broadcast primitive
stores the outgoing message in a queue buffer, stores the list
of packet attributes, and sets up a timer. The timer is set to
a random time during the second half of the interval time, as
shown in Figure 7.

During the first half of the time interval, the sender lis-
tens for other transmissions. If it hears a packet that matches
the attributes provided by the upper layer protocol or appli-
cation, the sender drops the packet. The send timer has been
set to a random time some time during the second half of
the interval. When the timer fires, and the sender has not yet
heard a transmission of the same packet attributes, the sender
broadcasts its packet to all its neighbors.

The polite broadcast module does not add any packet at-
tributes to outgoing packets apart from those added by the
upper layer.

4.1.7 Identified Polite Single-hop Broadcast
Identified polite single-hop broadcasts (ipolite) works in

the same way as the polite primitive but adds the identity of
the sender as a packet attribute through the use of the ibc
layer.

4.1.8 Best-effort Multi-hop Unicast
The best-effort multi-hop unicast primitive (mh) sends a

packet to an identified node in the network by using multi-
hop forwarding at each node in the network. The applica-
tion or protocol that uses the mh primitive supplies a routing
function for selecting the next-hop neighbor. If the mh prim-
itive is requested to send a packet for which no suitable next
hop neighbor is found, the caller is immediately notified of
this and may choose to initiate a route discovery process.



nf send(hops)

packetattr set(TTL, hops)

packetattr set(E2E SENDER, our address)

packetattr set(E2E PACKETID, seqno)

last sender← our address

last id← seqno

ipolite send({E2E SENDER, E2E PACKETID},

default interval)

seqno← seqno + 1

received ipolite packet

if(packetattr get(E2E SENDER) 6= last sender &

packetattr get(E2E PACKETID) 6= last id)

last sender← packetattr get(E2E SENDER)

last id← packetattr get(E2E PACKETID)

if(call upper layer() 6= 0)

ttl← packetattr get(TTL) - 1

if(ttl > 0)

packetattr set(TTL, ttl)

ipolite send({E2E SENDER, E2E PACKETID},

default interval)

Figure 8. Implementation of the best-effort network
flooding primitive, nf, in pseudocode.

Routing schemes that are not based on traditional routing
tables, such as attribute-based routing [22] or opportunistic
routing [2] are implemented using the routing function sup-
plied by the upper layer application or protocol. When a
next-hop neighbor has been found, the mh primitive uses the
best-effort unicast primitive to send packets to it.

4.1.9 Hop-by-hop Reliable Multi-hop Unicast
The hop-by-hop reliable multi-hop unicast primitive

(rmh) is similar to the best-effort multi-hop unicast primi-
tive except that it uses the reliable single-hop primitive for
the communication between two single-hop neighbors.

4.1.10 Best-effort Network Flooding
The best-effort network flooding primitive (nf) sends a

single packet to all nodes in the network. Like the Trickle
protocol [25], the nf primitive uses polite broadcasts at every
hop to reduce the number of redundant transmissions. Unlike
Trickle, however, the nf primitive does not perform retrans-
missions of flooded packets and packets are not tagged with
version numbers. Instead, the nf primitive sets the end-to-
end sender and end-to-end packet ID attributes on the pack-
ets it sends. A forwarding node saves the end-to-end sender
and packet ID of the last packet it forwards and does not for-
ward a packet if it has the same end-to-end sender and packet
ID as the last packet. This reduces the risk of routing loops,
but does not eliminate them entirely as the nf primitive saves
the attributes of the latest packet seen only. Therefore, the
nf primitive also uses the time to live attribute, which is de-
creased by one before forwarding a packet. If the time to live
reaches zero, the primitive does not forward the packet.

Figure 8 shows an implementation of the nf primitive in
pseudo-code.

4.2 Attribute Specification
Each Rime primitive keeps a list of the packet attributes

that the primitive uses. The list also contains the number of
bits that the primitive needs for each attribute. For instance,

Table 2. Packet attributes used by the rmh primitive.
Primitive Attribute Bits Scope

ibc Single-hop sender Addr len 1
uc Single-hop receiver Addr len 1
stuc Retransmissions 4 1
ruc Single-hop reliable 1 0
ruc Single-hop packet type 1 1
ruc Single-hop packet ID 2 1
ruc Max. rexmit 4 0
rmh End-to-end sender Addr len 2
rmh End-to-end receiver Addr len 2
rmh Time to live 5 2

a type attribute may need to use a single bit only, whereas
a time to live field may need five bits. Table 2 shows the
attribute specification for the reliable multi-hop (rmh) prim-
itive. Since the rmh primitive uses the ruc primitive, the at-
tribute specification of rmh includes the attribute specifica-
tion of ruc and the primitives on which ruc builds.

Chameleon uses the packet attribute specification both
when constructing packet headers and when parsing incom-
ing headers. When an application opens a logical channel,
Chameleon associates the attribute specification of all com-
munication primitives used on the channel with the channel.

4.3 Cross-layer Information Sharing
The communication primitives in the Rime stack use

packet attributes to pass information between layers. Once
a packet attribute has been set, it is not removed as the stack
processes the packet. This is different from how packet head-
ers are processed in most layered stacks. Traditionally, the
packet headers that belong to a particular layer is removed
from the packet after the header has been processed.

5 Header Transformations
The Chameleon header transformation modules produce

the headers for outgoing packets before passing the packets
to the MAC or link layer. If Chameleon is not able to im-
mediately send the packet, e.g. because an underlying MAC
layer has turned the radio device off, Chameleon queues the
outgoing packet for later processing.

Chameleon provides a default header packing mechanism
that is used for logical channels where no other Chameleon
module has been setup. The header packing mechanism
packs the packet attributes of outgoing packets into a packet
header based on the packet attribute specification used on the
channel. The header packing is deterministic; the packing
mechanism always produces the same packet header from
the same packet attributes.

Incoming packets on a channel for which no other
Chameleon module has been setup are handled by the default
header unpacking mechanism. The default header unpacking
mechanism does the reverse of the default header packing
mechanism: it parses incoming bit-packed headers and turns
them into packet attributes before sending the incoming data
and packet attributes to the Rime stack. The header unpack-
ing mechanism uses the packet attribute specification for the
logical channel that received the packet.

The attribute specification for the receiving channel must
match the attribute specification on the sending channel.



struct ibc {

struct abc abc;

const struct ibc_callbacks *callbacks;

};

struct ipolite {

struct ibc ibc;

const struct ipolite_callbacks *callbacks;

struct ctimer timer;

struct queuebuf *packet;

};

Figure 9. The implementation of the data structures of
the layered ipolite and ibc primitives. The data structure
includes the data structure of the lower layer primitive.

This may seem like an unusually strict requirement, but it is
not any different from the situation in traditional networking;
all Internet hosts must know that TCP port 80 is designated
for HTTP communication.

The single-hop reliable communication primitives in the
Rime stack benefit from automatic packet acknowledge-
ment if the underlying link layer provides such mechanisms.
Chameleon supports this by forging acknowledgement mes-
sages that are sent up to Rime when a link layer packet has
been automatically acknowledged. Similarly, Chameleon
intercepts acknowledgement messages sent from Rime and
drops them; if the data packet arrived in the first place, the
sender has already received a forged acknowledgement at the
remote node.

6 Implementation

We have implemented the Chameleon architecture—the
Rime stack and header transformation modules—in the C
programming language using the Contiki operating sys-
tem [13]. The implementation does, however, not use
any Contiki-specific functionality and should therefore be
portable to a wide range of embedded operating systems, in-
cluding TinyOS.

The communication state for the Rime primitives are im-
plemented as C structures as shown in Figure 9. A program
that communicates using a Rime communication primitive
statically allocates memory for the C structure corresponding
to the communication primitive. Layering is implemented as
nested structures. Each layer adds its own state variables in
the structure. Additionally, each layer adds a pointer to a set
of callback functions.

Packet attributes are stored in a fixed size array with one
entry for each packet attribute. The default configuration has
15 attributes.

7 Network Protocols

To explore the expressiveness of the Rime communica-
tion primitives, we implement four types of typical sensor
network protocols on top of Rime; one data collection pro-
tocol similar to MintRoute [33] and CTP [17], two data dis-
semination protocols based on Trickle [25] and Deluge [21],
and one mesh routing protocol based on AODV [28].

7.1 Data Collection
The data collection is an address-free protocol that sends

messages towards a sink node somewhere in the network.
The protocol is address-free in the sense that the originat-
ing nodes do not send their messages to a specific addressed
node. Instead, the nodes send their messages towards the
nearest sink in the network.

The protocol does two things. It first builds a tree that
originates at the sink node. The nodes build the tree by send-
ing periodic announcements containing the number of hops
away from the sink. After having built the tree, the nodes
start sending messages towards the root of the tree. The pro-
tocol sends the messages using hop-by-hop reliable unicast.

To implement the data collection protocol with Rime,
we use two Rime primitives: the reliable multi-hop mod-
ule primitive for sending messages towards the sink, and the
identified polite broadcast primitive for setting up the col-
lection tree. The implementation uses two Rime channels:
one reliable hop-by-hop (ruc) channel for sending data pack-
ets and one identified polite broadcast channel for sending
neighbor request and solicitation messages.

7.2 Data Dissemination
Data dissemination is an important mechanism in sen-

sor networks. Data dissemination is used to distribute com-
mands or new code to nodes in the network [25]. We have
implemented two data dissemination protocols with Rime: a
single-packet dissemination protocol based on Trickle [25]
and a multi-packet dissemination protocol based on Del-
uge [21].

The single-packet dissemination protocol runs on top of
the network flooding (nf) primitive, which in turn uses the
identified polite broadcast primitive. Packets to be dissemi-
nated are sent with a specific sequence number that is picked
by the original sender. If a node receives a packet with a se-
quence number that is higher than its own sequence number,
it resends the packet using the nf primitive. The resulting
protocol behaves as the original Trickle protocol; only the
implementation of the protocol is different.

The multi-packet dissemination protocol uses the single-
packet dissemination protocol to send the data. Negative ac-
knowledgements and repair packets are sent with identified
polite broadcasts. The protocol thus uses three logical chan-
nels: two for the single-packet dissemination protocol and
one for the identified polite broadcasts.

7.3 Mesh Routing
The mesh routing protocol is based on AODV [28]. Each

node keeps a list of destination node addresses together with
the address of the next-hop node. To setup a routing path
through the network, the protocol floods the network with
route request packets. When a node receives a route re-
quest packet, it sets up a backward path to the sender of
the route request, and rebroadcasts the route request towards
other neighbors. If a node receives a route request for its
own address, the node sends a route reply packet back to the
sender of the route request. Since nodes along the path to-
wards the sender of the route request have a route back to the
sender, the route reply can be sent along this route. The route
reply is sent using multi-hop unicast. Nodes that forward the



route reply set up a route towards the receiver of the original
route request packet. Data packets are sent using multi-hop
unicast.

The Rime implementation of the mesh routing protocol
uses the network flooding primitive (nf) to send route re-
quests to the entire network and the best-effort multi-hop
forwarding primitive (mh) to send multi-hop unicasts.

8 Chameleon Modules
To explore how well the Chameleon architecture is able

to adapt to underlying protocols and mechanisms, we have
implemented Chameleon modules that mimic the 802.15.4
header format, the X-MAC MAC protocol [4], and TCP/IP.
The 802.15.4 Chameleon module does not implement the
full 802.15.4 protocol, but simply constructs 802.15.4-
compatible frames based on information in the packet at-
tributes coming from Rime. The X-MAC module imple-
ments the X-MAC protocol, which treats broadcast and uni-
cast packets differently. The TCP/IP Chameleon module is
based on uIP [12] and constructs UDP packets and TCP seg-
ments from the packet attributes; reliable unicast packets are
sent over TCP connections, and best-effort and broadcast
packets are sent over UDP.

9 Evaluation
The primary metric of a communication architecture is

how well its communication abstractions fit the problem do-
main. This is a qualitative metric and is therefore not pos-
sible to quantify. The secondary metric is the overhead of
an implementation of the architecture. For sensor networks,
we measure the overhead in memory footprint, energy con-
sumption, and run-time performance. For sensor network
programs, memory footprint typically is determined at com-
pile time. For dynamically allocatable buffers, the memory
footprint is compile-time configurable and it is interesting
to measure how well a typical configuration works. Energy
consumption is typically determined by the time the radio de-
vice can be asleep. This is, however, dependent on the MAC
protocol and not on the communication architecture. Nev-
ertheless, the size of packet headers matters for the energy
consumption as larger packet headers require more transmis-
sion and reception time, which amounts to a higher energy
consumption. The run-time performance is number of mi-
croprocessor cycles required to execute the implementation
of the architecture.

We evaluate the qualitative aspect of how well the com-
munication primitives in the Rime stack map onto sensor net-
work protocols. This is done in Section 7 by implementing
sensor network protocols with Rime. Similarly, we evaluate
the flexibility of Chameleon by implementing a set of under-
lying protocols with Chameleon. We do this in Section 8.

In this section, we quantitatively evaluate the complexity
of the protocol implementations, the memory footprint of our
implementation of the Rime stack, and the run-time overhead
of our implementation of the architecture. Our results show
that the complexity of the protocol implementations in Rime
is lower than similar implementations for previous commu-
nication architectures for sensor networks, that the memory
footprint is small, and that the execution-time overhead of
the implementation is small.

Table 3. Comparison of implementation complexity of
the data collection and data dissemination protocols.

Statements Statements
Module (SP) (Rime)

Data dissemination 109 28
Data collection 138 72

9.1 Complexity of Protocol Implementations
One of the design goals of the Rime stack is to reduce

the implementation complexity of communication protocols
for sensor networks. To evaluate if Rime reduces the imple-
mentation complexity of sensor network protocols, we com-
pare the Rime implementation of the data collection, data
dissemination, and mesh routing protocols with the corre-
sponding implementations of similar protocols implemented
within the SP architecture [30]1.

We use the number of program language statements used
to implement the protocol as an approximation of the imple-
mentation complexity. While this approximation is affected
by many other factors other than the implementation com-
plexity, such as programming language terseness and pro-
gramming style, it allows us to see general trends. If one
protocol implementation consists of radically more program
language statements than another does, this may hint towards
the first being more complex than the other is.

Table 3 lists the number of program language statements
in the implementations of the Trickle data dissemination pro-
tocol and the data collection protocol in SP and in Rime. The
numbers for Rime are C statements, excluding comments
and header files, and the numbers for SP are nesC statements,
excluding comments and module specification statements.
We see that the number of program language statements in
the Rime implementations is much smaller than for SP. We
did not have a mesh routing implementation in SP to com-
pare with, but the TinyAODV code in TinyOS 1.x2 consists
of 496 statements, while the mesh routing and route discov-
ery code in Rime consists of only 105 statements.

9.2 Memory Footprint
Due to the limited memory size of sensor network nodes,

the memory footprint of the Chameleon architecture is an im-
portant measure of it feasibility and usefulness on memory-
constrained sensor network nodes.

The total memory footprint is composed of two parts: the
memory footprint of the compiled code, which always is
present in on-chip ROM, and the memory footprint of the
data memory required to run the code. The size of the data
memory includes the buffers, both the Rime buffer and all
queue buffers, and all protocol state.

Table 4 lists the memory footprint of the Rime modules,
compiled for the MSP430 microcontroller. The code was
compiled with a Rime buffer size of 128 bytes and 4 queue
buffers. If all modules are to be included in the final sys-
tem, the total memory footprint of the compiled code is less

1The SP implementations were provided by Joe Polastre.
2The TinyAODV code is from tinyos-contrib-

1.1.0/contrib/hsn/tos/lib/AODV Core.nc and tinyos-contrib-
1.1.0/contrib/hsn/tos/lib/AODV PacketForwarder.nc.



Table 4. Static memory footprint of Rime compiled for
the Tmote Sky/MSP430. The RAM for the communica-
tion primitives is the per-channel RAM footprint.

ROM RAM
Module (bytes) (bytes)

rimebuf 416 168
queuebuf 320 730
abc 134 2
ibc 114 2
uc 124 2
stuc 272 16
ruc 254 4
polite 390 15
ipolite 406 15
mh 246 2
rmh 266 3
nf 356 7
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Figure 10. Message delivery rates for the data collection
and mesh routing protocols with three and with seven
queue buffers.

than 10% of the available ROM and RAM on the Tmote Sky
platform.

The largest module in terms of RAM footprint in Table 4
is the queuebuf module. The queuebuf module contains stat-
ically allocated memory for all queue buffers in the stack
and the maxiumum number of queue buffers therefore deter-
mines the RAM footprint of the module. How many queue
buffers that are needed by Rime depend on the applications
running on top of Rime and on the environment in which
they run.

To determine a reasonable configuration of available
queue buffers, we simulate a network of 25 nodes in a square
lattice. Each node run a data collection application and an
application that uses the mesh routing protocols. We mea-
sure the amount of queue buffers that are needed. With an
interval of 10 seconds, each node sends a data collection
message towards the sink and a mesh routing message. The
sink is located in the top right corner, and the mesh routing
message is sent to the node in bottom right corner. With this
configuration, the maximum amount of queue buffers used
in the network is seven. The number of received packets is

Table 5. Static memory footprint of five header transfor-
mation modules compiled for the Tmote Sky/MSP430.

ROM RAM
Module (bytes) (bytes)

Bit-pack 1090 0
Non-opt 472 0
802.15.4 642 0
UDP/IP 1658 104
TCP/IP 6042 162

shown in Figure 10. After 220 seconds, the number of de-
livered data collection packets is slightly higher with an un-
limited amount of queue buffers. The number of delivered
mesh routing messages is, however, higher with the limited
amount of queue buffers. The reason for this is that the mesh
routing protocol, which does not allocate queue buffers, does
not have to compete with the data collection traffic that can-
not allocate enough queue buffers.

The memory requirements for five header transformation
modules are given in Table 5. The UDP/IP module includes
an implementation of the ARP protocol and the TCP/IP mod-
ule contains the entire uIP TCP/IP stack [12]. The ROM re-
quirement of uIP and the ARP module is 5312 bytes.

9.3 Execution Time Overhead
The purpose of the Chameleon architecture is not to op-

timize the execution time but to provide an adaptive com-
munication architecture for sensor network applications and
protocols. Nevertheless, it is interesting to study the exe-
cution time characteristics of the architecture as it provides
insights into the behavior of a packet attribute-based archi-
tecture such as Chameleon. We find that the execution time
overhead of the packet attribute-based Chameleon architec-
ture is small compared to a packet header-based architecture.

We first measure the Chameleon architecture as a black
box. To measure the effect of the execution time overhead of
Chameleon, we implement two versions of the Chameleon
architecture: one using packet attributes, and one using tra-
ditional packet headers. We run both implementations on
Tmote Sky nodes [31] using the X-MAC protocol [4] with
a 9% duty cycle. Both implementations construct 802.15.4-
compatible MAC-level headers. We run two experiments.
First, we let two Tmote Sky nodes ping-pong packets be-
tween each other using the best-effort unicast primitive. Sec-
ond, the two nodes ping-pong packets using the best-effort
local area broadcast primitive. During both experiments we
measure the round-trip time of the packets. The results of the
measurements are show in Figure 11. The round-trip time,
which is completely dominated by the time spent waiting for
the other node to wake up, is not noticeably different be-
tween the two implementations.

To study the performance effect of packet attributes, we
measure and compare the run time of the Rime stack im-
plemented with packet attributes and with packet headers.
We run the Rime data collection protocol on nine Tmote
Sky motes. We run the MSP430 microcontroller at a speed
of 2.45 MHz and measure the CPU cycles with a hardware
timer running at the CPU speed. We measure the time from
the application’s invocation of the entry function into the
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Figure 11. The round-trip time for ping-ponging a packet
between two Tmote Sky motes using the X-MAC proto-
col. The overhead for packet attributes is negligible.

Rime stack, to the packet is transmitted. Packets are formed
as 802.15.4 frames. The packet attribute-based implemen-
tation uses the 802.15.4 Chameleon module, whereas the
packet header-based implementation uses a tailored MAC
driver that is able to produce 802.15.4-compatible frames.
We measure the execution time at different points in the
stack: at the data collection layer (tree), at the reliable unicast
layer (ruc), at the best-effort unicast layer (uc), at the iden-
tified broadcast layer (ibc), and at the anonymous broadcast
layer (abc). The measured execution time does not include
the overhead of the device driver for the radio chip, which
typically is on the order of a few milliseconds on the Tmote
Sky. To study the impact of packet size, we run two ex-
periments, one with 10-byte packets and one with 100-byte
packets.

The results of the execution time measurements are
shown in Figure 12. We see that for the lowest three layers
in the stack, the execution time for the packet attribute-based
implementation is similar to or lower than the execution time
for the packet header-based implementation. For the reliable
unicast and the data collection layers, however, the execu-
tion time is higher for the packet attribute-based implemen-
tation. The reason for this is that the reliable unicast module
copies the outgoing packet to a queue buffer. In the packet
attribute-based, the prototype implementation copies a list
of all possible packet attributes to the queue buffer. In the
packet header-based implementation, the queue buffer opera-
tion only copies the packet header, which typically is smaller
than the list of available packet attributes. This is, however,
an artifact of our current prototype implementation and it is
most likely possible to optimize this operation.

To quantify the run-time overhead of different header
transformation modules, we measure the processor cycles
spent in each transformation module. We perform two exper-
iments, one with the single-hop unicast module (uc) and one
with the data collection protocol, which uses both best-effort
broadcast messages and reliable unicast messages. We take
timestamps before calling the header transformation module
and after returning from the call.
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Figure 12. Measured execution time in milliseconds at
different layers, with 10 and 100 byte packets, with and
without packet attributes.

Table 6. Measured execution time in cycles of different
header transformation modules. 1000 cycles is approxi-
mately 0.4 ms.

Module Data collection Unicast

Non-packed, input 991 738
Non-packed, output 584 458
Bit-packed, input 1160 739
Bit-packed, output 932 457
802.15.4, input 1424 503
802.15.4, output 956 348
UDP/IP, input 2103 904
UDP/IP, output 1735 512

Table 6 shows the measured CPU cycles for the different
header transformation modules. The overhead is larger in
the data collection case because the data collection protocol
has more headers than the unicast protocol. The 802.15.4
header transformation module is the fastest in the unicast
case because it is optimized for this case; it checks if the
packet attributes match the 802.15.4 header and if so quickly
produces a matching header. If more packet attributes are
present, extra headers are put after the standard 802.15.4
header, which increases the execution time. UDP/IP calcu-
lates the IP checksum, which increases its execution time.

9.4 Energy Trade-offs in Bit-packed Headers
The cross-layer bit-packed header transformation module

in Chameleon can reduce the size of transmitted packet head-
ers, which leaves more room for data in each packet, and
reduces the risk of bit errors in the header [11]. In this con-
text, it is interesting to study if the header packing also re-
duces the energy consumption. Since energy is spent on both
constructing and transmitting headers, the reduction in trans-
mission energy must be more than the increase in processing
energy for constructing the bit-packed headers. To evalu-
ate the energy consumption, we use the energy estimation
mechanism in Contiki [15]. The mechanism computes an
energy estimate from pre-measured current component draw
and real-time measurements of radio transmission and listen-
ing time, and CPU processing and sleeping time.



Table 7. The estimated power consumption in mW of the
bit-packed header transformation module and the non-
packed header transformation module. The total power
is rounded to two significant digits.

CPU Transmit Total
Module power power power

Non-packed 0.0401 0.237 0.28
Bit-packed 0.0401 0.237 0.28

We let the data collection application send data once ev-
ery two seconds on nine Tmote Sky boards. We compare
the estimated energy consumption of the bit-packed header
with that of a non-packed header. In both experiments, we
transmit 16 bytes of application data. By bit-packing the
data collection protocol headers, the data collection header
size is reduced with 33% from twelve bytes (Figure 3) to
eight bytes (Figure 4). While this does increase the available
space for data in each packet, and reduces the risk of bit er-
rors in the header, it does not seem to significantly reduce the
energy consumption. Table 7 reports the estimated energy
consumption for the data collection application for both the
bit-packed headers and the non-packed headers. All reported
data are averaged over six runs of 200 seconds each. While
our measurements show slightly lower energy consumption
with a bit-packed header, the reduction is not significant.

10 Related Work
Culler et al. [10] highlight the need for defining a sensor

network architecture and discuss where to place the narrow
waist of the architecture. The authors conclude that, in or-
der to allow for both address-free and name-based protocols,
the narrow waist should be placed between the network layer
and the link layer. Polastre et al. [30] implement and evaluate
SP, a sensor network architecture based on the proposal by
Culler et al. The SP architecture provides an abstraction of
the link layer and mechanisms for managing next-hop neigh-
bors and their sleep cycle schedules. The SP architecture has
inspired the design of the Chameleon architecture and parts
of the SP architecture, such as the placement of the narrow
waist, can be found in the Chameleon architecture. However,
Rime provides a wide range of communication primitives for
simplifying protocol implementations that SP does not. Fur-
thermore, the header optimization and transformation mech-
anisms in Rime do not have any counterpart in SP.

Cheng et al. [16] propose a modular network layer that is
intended to run on top of SP. The modular network layer pro-
vides multi-hop routing functionality that SP does not pro-
vide. The network layer provides a software architecture that
is designed to simplify the implementation of routing proto-
cols. Rime is different in that Rime itself provides a rich
set of communication primitives instead of relying on the
protocol or application developer to implement such primi-
tives. The modular network layer by Cheng et al. is layered
and the protocol developer must specifically define packet
headers. The architecture suffers from the same problems as
other layered stacks in that cross-layer information sharing
is difficult and in that the architecture does not easily allow
bit-packed headers and header optimizations.

The challenges of constructing a communication architecture
for sensor networks is very different from the challenges in
constructing a general-purpose communication architecture
for the Internet [7]. Nevertheless, our work is inspired by
the ideas behind the Plutarch architecture by Crowcroft et
al. [9] and the role-based architecture by Braden et al. [3].
The Plutarch architecture does not specify the particular pro-
tocols to be used within the architecture, which is similar to
how the Chameleon architecture does not specify the partic-
ular message formats used within the architecture.

The role-based architecture by Braden et al. shares many
similarities with the packet attribute and header transforma-
tion mechanisms in the Chameleon architecture, such as the
use of packet attributes instead of packet headers. How-
ever, there are a number of significant differences. First,
the role-based architecture is designed to be fully modu-
lar, with the possibility to freely compose roles. In con-
trast, we deliberately designed the Chameleon architecture
and the Rime stack to be strictly layered in order to re-
duce the complexity of the architecture, which is important
for resource constrained sensor nodes. Second, unlike the
Chameleon architecture, the role-based architecture does not
specify any communication protocols or mechanisms, but is
only a framework in which protocols can be implemented.
The Chameleon architecture includes a set of communica-
tion primitives that are designed for the specific application
domain of sensor networks. Third, since the problem scope
of a general-purpose Internet-scale communication architec-
ture is much larger than that of a sensor network communica-
tion architecture, the role-based architecture includes several
mechanisms for controlling the access to packet attributes.
In this sense, the Chameleon architecture is significantly less
complex.

Chang and Gay [5] present network types, an exten-
sion to the nesC language that solves parts of same prob-
lem that the header transformation modules in Chameleon
do: protocol implementations do not need to implement
header field alignment and header field byte ordering. Un-
like Chameleon, however, network types do not address the
cross-layer information sharing problem, but still require
protocol headers to be strictly separated.

A number of programming primitives for sensor networks
have been proposed and investigated [18, 26]. Rime is differ-
ent from this body of work in that the communication prim-
itives provided by Rime are more low-level. The Rime com-
munication primitives can be used to implement higher level
programming primitives such as logical neighborhoods [26]
or generic role assignment [18].

11 Conclusions
We present a novel communication architecture for wire-

less sensor networks that provides a set of communication
primitives that map well onto the communication primitives
used by typical sensor network protocols. The architec-
ture does not use packet headers but instead uses packet at-
tributes, an abstract representation of the information com-
monly found in packet headers. Packet attributes make it
possible for the architecture to adapt to a variety of underly-
ing protocols and mechanisms such as MAC and link layer



protocols. The overhead in terms of memory footprint and
execution time is low. Thus an adaptive communication
architecture such as Chameleon can be efficiently used for
wireless sensor networks.
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